INTERNATIONAL CLIMATE INITIATIVE On behalf of:

% Federal Ministry
as for the Environment, Nature Conservation,

RegIOl’la| pI’OjeCt Building and Nuclear Safety
Climate Protection through Forest Conservation
in PaCific ISIand Countries of the Federal Republic of Germany

Historical and projected
deforestation rates 1990 -2020
for Santo Island / Vanuatu

Processing description and results

Deutsche Gesellschaft
fur Internationale
Zusammenar beit (G1Z) GmbH






Historical and projected
deforestation rates 1990 -2020
for Santo Island / Vanuatu

Processing description and results

April, 15 2014

On behalf of:

eeeeeeeeeeeeeee

of the Federal Republic of Germany



Prepared by: Jorg Seifert-Granzin
Dorys Mendez Zeballos

Email: jseifert@mesa-consult.com

On behalf of: SPC/GIZ Regional Project
‘Climate Protection through Forest Conservation in Pacific Island Countries’

P.0. Box 14041, SUVA, Fiji
Email: karl-peter.kirsch-jung@giz.de

2 SPC/GIZ Regional REDD+ Project


mailto:karl-peter.kirsch-jung@giz.de
mailto:karl-peter.kirsch-jung@giz.de

Executive summary

The island of Santo in the Republic of Vanuatu has a forest cover of 285,530 ha (2010). In a pilot modelling
approach, a forest cover change projection for the years of 2010 - 2020 has been developed. This will inform
the process of developing a reference emission level (REL) for the forest sector in Vanuatu.

The model predicts a total deforestation of 1,898.8 ha or 0.67% for the period 2011-2020, as shown on the
map on page 26. The average annual deforestation rate therefore remains low at 0.067%, or ca. 190 ha per
year. Most of the deforestation will occur in the surroundings of the provincial capital Luganville and, to a
lesser extent, along Santo’s west coast. The highest impact on forest carbon is assumed to come from forest
degradation, which could not be included in this analysis due to lack of data.

While the projected rate is twice as high as the historically measured deforestation between 1990 and 2010
(0.33 % - 1,907.1 ha), it remains significantly below the observed 2007 — 2010 deforestation (0.1% - 854.7
ha). The approach, as described in chapter 1, combines three types of data sets:

1. Remote sensing data and results covering different periods have been used to reconstruct the
deforestation trajectory for the periods 1990-2000, 2000-2007, and 2007-2010;

2. The National Census of Population and Housing data and the Agricultural Census data published by
Vanuatu’s National Statistics Office served as a basis to conclude which drivers and underlying causes
have to be considered in projecting the future deforestation trajectory;

3. Data to model setdement patterns, road networks, and landscape features was used to develop the

driver proxies.

In future work steps, the quality of the inputs has to be improved in order increase the accuracy and
acceptance of this conservatively developed deforestation baseline. However, this information will provide the
government of Vanuatu with a basic understanding of the pattern of deforestation dynamics in Santo: the
island can be divided into two sub-regions. While deforestation on Santo’s west coast is driven by small scale
agriculture and small-scale agricultural trade relying on shipping, land-use change in Santo’s eastern part is
driven by cattle ranching, medium scale agriculture, urbanization, and tourism development. This has to be
considered when developing concrete incentives to stop deforestation.

Apart from the process of developing a reference level for future greenhouse gas emissions from the forest
sector in a province of Vanuatu, the report points to an issue which has to be considered by all Pacific Island
Countries: While continental areas are usually covered by the LandSAT 8 satellite at around two scenes per
month during the last 11 months, Vanuatu to date has been covered by 7 scenes only. A similar rate can be
assumed for most countries in the region. It is of utmost importance for the sustainability of the National
Forest Monitoring Systems, that the Governments of the Region request USGS to cover the small island
states in the same way as the continental areas.
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DoF Vanuatu Department of Forestry

DSM Digital Surface Model
FBD Fine resolution model dual polarization
FNF Forest/non-forest

GOFC-GOLD  Global Observation of Forest and Land Cover Dynamics

IPCC Intergovernmental Panel on Climate Change

JAXA Japan Aerospace Exploration Agency

K&C3 3rd Kyoto and Carbon Science Program

LCC Land cover change

LULCC Land-use / land-cover change

LULUCF Land Use, Land-Use Change, and Forestry

MMU Minimum mapping unit

MRV Measurement, reporting, and verification

REDD+ Reducing emissions form deforestation, forest degradation, conservation, sustainable

management of forests and enhancement of carbon stocks

RS Remote sensing

SAR Synthetic Aperture Radar (SAR)

SBSTA Subsidiary Body on Scientific and Technological Advice
SRTM Shuttle Radar Topography Mission

UNFCCC United Nations Framework Convention on Climate Change
VHR Very-high resolution (VHR) optical data

WGS World Geodetic System
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Introduction

Reducing emissions from deforestation, forest degradation, sustainable management of forests, enhancement
and conservation of forest carbon stocks (REDD+) is considered one of the most cost-effective options to
mitigate climate change. The Conference of the Parties (COP) to the United Nations Framework
Convention on Climate Change (UNFCCC) frames REDD+ as one of the building blocks of the post-Kyoto
mitigation architecture negotiated in the Ad-hoc Working Group on Long-term Cooperative Action (AWG-
LCA) and The Subsidiary Body on Scientific and Technological Advice (SBSTA). While negotiations on
measurement, reporting and verification (MRV) of greenhouse gas emission reductions and Removals (ERR)
haven’t been concluded, the modalities for establishing reference (emission) levels and for informing on
safeguards compliance have been agreed. The Canciin-Agreements frame REDD+ implementation as a
phased approach: Countries are requested to develop their REDD+ strategies or action plans to defined
policies to be implemented in the second phase involving capacity building, technology development and
results-based demonstration activities, evolving into results-based actions that should be fully measured,
reported and verified during the third phase (1/CP.16 par. 73 in FCCC/CP/2010/7/Add.1). Convened in
November 2013 in Warsaw, COP 19 consolidated the modalities for developing National Forest Monitoring
Systems (NEMS), for MRV, and for the technical assessment of Forest Reference Emission Levels and Forest
Reference Levels (FREL/FRL), which together with other decisions form the so-called Warsaw Framework for
REDD-plus (FCCC/CP/2013/10, par. 44).

The term “reference level” refers to a scenario providing emission levels over an agreed period of time to be
used as benchmark to measure performance of forest and land-use policy adjustments (Brown et al. 2006).
Such benchmarks are constructed combining information (so-called “activity data”) on the magnitude of
anthropogenic interventions causing greenhouse gas (GHG) emissions (e.g. deforestation patterns of a
predefined period in the past) with information (so-called “emission factors”) representing different forest
carbon pools (Meridian Institcute 2011b). In case of forests, these pools include above-ground and below-
ground biomass, litter, soil carbon, dead wood, and harvested wood products (Eggleston et al. 2006). Then,
historic activity data is extrapolated into the future to develop a business-as-usual (BAU) scenario to be used
as a benchmark. It is common practice to use spatial modeling to locate areas under risk to be deforested in
the future (VCS 2013).

As of now, only a few countries have presented a reference emission level for REDD+'. While several
methodologies have been developed and successfully tested in project-based approaches focusing on voluntary
markets’, subnational and national implementation of REDD+ faces particular challenges related to scale,
policies and complexity (Meridian Institute 2011b; Meridian Institute 2011a). Land-use change detection
covering a national territory in a wall-to-wall mode across several periods has to deal with data gaps due to
clouds, or missing sensor coverage or ground truth data (GOFC-GOLD 2013). Heterogeneous sensor
products have to be processed and integrated and the capabilities of new sensor systems (e.g. Landsat 8,
Sentinel-1/2, ALOS Palsar 2, CBERS 4) have to be anticipated in setting up national forest monitoring
systems.

The impacts of policies on the dynamics of land-use change are difficult to assess. Bridging the gap between
observed deforestation patterns and fragmented socio-economic data applying conceptual models of drivers,
underlying causes and agents of deforestation (Geist and Lambin 2001; Geist and Lambin 2002) at the
national level remains a challenge. Consequently, land-use change models providing a business-as-usual
scenario for the near future, which is supposed to be counterfactual, rely to a certain extend on expert
judgment. Expert judgment needs to be flagged following agreed standards established by the IPCC (Penman
et al. 2003). Complementarily, the validation of reference emission levels and its input data requires agreed

' The Forest Carbon Partnership Facility (FCPF) of the World Bank (http://www.forestcarbonpartnership.org/fcp/) and the UN-
REDD, REDD Program of the United Nations (http://www.un-redd.org/) maintain databases documenting countries’
achievements in implementing REDD+.

The REDD+ methodologies certified under the Verified Carbon Standard are available at www.v-c-s.org.
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methods, too. The UNFCCC parties have addressed these issues in several workshops
(FCCC/SBSTA/2006/10; FCCC/SBSTA/2009/2°) and concluded on guidelines and procedures for the
technical assessment of FREL/FRLs (Decision 13/CP.19 in FCCC/CP/2013/10/Add.1).

Small-island states face particular challenges in establishing their reference level. Their national territory is
discontinuous, composed of islands differing in size, vegetation, socio-economic development, and
topography. Poor satellite coverage, cloud cover, and rough topography hampered land-use change
monitoring in the past. In its REDD+ Strategy, Vanuatu, a Pacific island country, commits to a subnational
REDD+ implementation mode. The German Environment Ministry, facilitated by the Gesellschaft fiir
Internationale Zusammenarbeit (GIZ), is supporting Vanuatu’s REDD+ process with its regional Project
“Climate Protection through Forest Conservation in the Pacific Island Countries”. As Vanuatu’s provincial
boundaries encompass several islands differing in size, and the dynamics of drivers of deforestation and forest
degradation, a subnational REL design based on island topography is currently being considered to be piloted
on Santo Island. A REL is based on historic deforestation patterns and rates across several periods (e.g. 1990-
2000-2007-2010). As Vanuatu has been poorly covered by medium resolution multispectral optical sensors in
the past, optical processing has to be combined with Synthetic Aperture Radar (SAR) data processing to
derive cloud-free forest masks (Herold et al. 2007). While multi-sensor approaches have been successfully
tested in large scale forest cover classification and mapping (Walker et al. 2010), methodological guidance on
multi-temporal multi-sensor integration in small to medium scale forest-cover mapping is scarce.

Within this context, this processing note describes how to develop a subnational forest reference emission
level for Espiritu Santo Island, Vanuatu, using a spatial modeling approach. Section 1 describes its conceptual
framework, methods, and data used in this analysis. Section 2 describes the processing steps applied in the
spatial projection of the future deforestation pattern. Section 3 discusses the preliminary results. The technical
note concludes with recommendations how to proceed in closing data gaps and how to develop the model
further.

1 Conceptual approach, methods, and data to model land cover and land-use
change

Land use / land cover (LULC) change refers to “(quantitative) changes in the areal extent (increases or
decreases) of a given type of land use or land cover” (Briassoulis 2001). The system of the IPCC is particularly
useful in this context as it covers all potential transitions between different LULC categories within a generic
approach (Eggleston et al. 2006). However, within its reporting perspective IPCC focusses on anthropogenic
change, while LULC might be caused by natural events (extreme weather events, geo-hazards) as well.

Early research in computational modelling of tropical land use change already referred to underlying driving
forces (Turner II, Skole, and Meyer 1994) or pattern drivers (Hall et al. 1995), but did not embed their
analysis in an explicit conceptual framework or unifying theory of land use change. The work of Geist and
Lambin on proximate and underlying causes of deforestation (Geist and Lambin 2001; Geist and Lambin
2002) can be considered the starting point of a systematic conceptual approach towards building a unifying
theory of land use change. The authors base their conceptual framework on the distinction of proximate
causes and underlying driving forces (Geist and Lambin 2002). Proximate causes are introduced as “human
activities or immediate actions at the local level [...] that originate from intended land use and directly impact
forest cover”, while underlying driving forces are framed as “fundamental social processes [...] that underpin
the proximate causes and either operate at the local level or have indirect impact from the national or global
level” (ibid). Geist and Lambin developed a comprehensive view clustering potential proximate causes and

3 Official UN documents and decisions are referenced by their official symbol. The UNFCCC documents are available at:
hetp://unfecc.int/documentation/documents/items/3595. php.
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underlying driving forces (cf. figure 1). The idea of underlying forces (or “causes”) driving proximate causes
(“drivers”) has been widely anticipated in REDD+ research and, to a lesser extent, in REDD+ negotiations4.

LULCC models capture the interaction between anthropogenic driver, causes, agents and natural systems in
space and time. During the last decade, several LULCC modeling techniques have emerged and were
reviewed by the LULCC science and user community (Briassoulis 2001; Agarwal et al. 2002; Verburg et al.
2004; Schaldach and Priess 2008; Committee on Needs and Research Requirements for Land Change
Modeling et al. 2013). Within the REDD+ developer and user community, cellular automaton based
approaches5 are widely used to establish forest reference emission levels for reducing deforestation (Brown et
al. 2006; Leite et al. 2012).

Figure 1: Drivers and underlying causes of deforestation

Drivers
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* Transport * Permanent cultivation * Commercial logging
* Markets * Shifting cultivation * Fuelwood 0therfa.ctors‘
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Underlying causes

Source: Geist and Lambin 2002 (adapted)

Amongst the LULCC modeling approaches used in the REDD+ community, Dinamica Environment for
Geoprocessing Objects (EGO) has an outstanding trajectory. Dinamica EGO is an environmental modeling
framework developed by the Remote Sensing lab of the Universidade Federal de Minas Gerais, Brazil6. It is
being used all over the world to assess landscape and LULCC dynamics (Britaldo Silveira Soares-Filho et al.
2006; Maeda et al. 2010; Thapa and Murayama 2011; Yi et al. 2012; Carlson et al. 2012). The modeling
suite has prooven to be more open, faster, and more flexible than similar modeling environments (Mas et al.

2014).

Dinamica EGO applies a Bayesian Statistics approach implemented by the so-called Weights of Evidence
(WoE) method (B. S. Soares-Filho, Rodrigues, and Costa 2013). The approach requires a transition matrix

The Warsaw Framework for REDD-plus only recognizes “that drivers of deforestation and forest degradation have many causes”
(Decision 15/CP.19 in FCCC/CP/2013/10/Add.1, par. 2), but doesnt elaborate further on how to address them.

Cellular automata refer to a broad class of modeling techniques in which space is represented as a regular grid of homogenous cells
which can assume certain predefined states determined by a set of rules at any time step anticipating the state of neighboring cells.
This technique can be considered the workhorse of LULCC modeling and has been widely implemented in different Geographic
Information System (GIS) software packages (e.g. IDRISI, ArcGIS, Quantum GIS) or stand-alone applications (e.g. GEOMOD,
CLUE-S, Dinamica EGO).

¢ The software is freely available at http://www.csr.ufmg.br/dinamica/.
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presenting transition rates P for all possible transitions between j LULC classes over one or multiple time
steps expressed in v temporal units (ibid):

[Pll P12 Pl]]
|P21 Pzz PZ] |
11 12

Within this system, the state of class 2, e.g. area change in class 2 at time v, depends on the sum of changes
from class 2 to all other classes j expressed in percent of the initial stage of class 2 at t=0 during v. Once the
transition rates Pjj have been calculated, the WoE method assesses the influence of a spatial variable on the
spatial probability of a transition i->j independently from the effects of a combined solution. These spatial
variables might represent certain (sets of) drivers or underlying causes. The conditional probability of
transition D (e.g. deforestation) given a spatial variable C (e.g. distance to settlements) P {D|C} can be
expressed as (Follador et al. 2008):

P{DNC} _ p{p}ELIR} P{c|D}

@  PDIC =05 e

Equation 2 can be transformed into logits, where W+ is the Weights of Evidence of occurring a deforestation
event D given a spatial pattern C (B. S. Soares-Filho, Rodrigues, and Costa 2013):

(3) log{D|C} =log{D}+ W™

This approach can be extended to relate a transition to several spatial variables, environmental criteria or
pp Y
patterns Cn to estimate the spatial post-probability of the transition D:

eIWH

(4) P{D|IC;NC,NnC3N..NCL}=

1+eIW3

where Cn are the values of n spatial variables observed at location x, y and represented by their specific
Weights of Evidence W,". Since WoE only applies to categorical data, continuous data has to be categorized
preserving the data structure (B. S. Soares-Filho, Rodrigues, and Costa 2013). The WoE method generates a
Probability map of LULC transitions which can be used to predict future transitions based on additional rules
or criteria.

The choice of the modeling approach depends on the targeted scale and availability of data. To bypass the
restrictions imposed by data availability, land-use modelers tend to incorporate the drivers (and underlying
causes) indirectly by choosing suitable proxies, e.g. spatially explicit features (road networks, settlement
patterns) representing biophysical, political, or socioeconomic drivers. The WoE approach is particularly
useful to assess the influence of these proxies on the observed deforestation pattern using spatial proxies.

The 1990-2000-2007-2010 deforestation on Santo Island is based on three types of data sets. Remote sensing
data and results covering different periods have been used to reconstruct the deforestation trajectory for the
periods 1990-2000, 2000-2007, and 2007-2010. The National Census of Population and Housing data and
the Agricultural Census data published by Vanuatu’s National Statistics Office served as a basis to conclude
which drivers and underlying causes have to be considered in projecting the future deforestation trajectory.
Thirdly, data providing the location of settlements, roads, and landscape features are required to develop the
driver proxies. The following sections briefly discuss the potential and limitations of the different data sets.

Three remote sensing data products were considered in this analysis:

Period 1990-2000: Vanuatu counts with a wall-to-wall deforestation assessment covering the
period 1990 — 2000. The assessment developed a specific method based on indices combined in

1990-2020 Deforestation rates for Santo Island / Vanuatuu 9



pseudo spectral channels, applied it to high-resolution data (1990: Spot 1 /2 and Landsat 4, 2000:
Landsat 7, Aster) and detected deforestation patterns at a minimum mapping unit (MMU) of 0.3ha
(Herold et al. 2007). The study reports a gross deforestation for all islands between 1990 and 2000
of 4.677,6 ha or 467.8 ha/year, with more than 1/5 of the total forest loss observed on Santo Island
(ibid.). Three land cover categories based on tree canopy cover density (bare area: less than 10%;
woodland: 10-40%; forest: more than 40%) were detected. The results include a 2000 forest/non-
forest cover map and a 1990-2000 deforestation map. The GIS data delivered to Vanuatu’s
Department of Forestry (DoF) indicates that the Santo’s annual deforestation rate reached 970 ha
or 97 halyear (see Table 3, page 28).

Due to lack of suitable reference data covering the past, the geometric and thematic accuracy of the
product is unknown. Some issues reduce its potential for establishing consistent long-term time-
series of deforestation rates and patterns. First, it remains unclear, whether the deforestation
product has been processed applying a forest definition related to the highest density class (more
than 40% tree cover). The report does not state that explicitly. The metadata of the deforestation
product refers to class 3 as “land forest loss”. Secondly, the deforestation product and the 2000
forest/non-forest cover map do not match. Overlaying both coverages reveals that 1990-2000
deforestation patterns intersect with 2000 woodlands and forest (!) cover. The report suggests that
the 2000 forest/non-forest cover map has been processed, first to be used as a baseline for the
change detection. In any event, change patterns should be consistent with the final time stamp. A
third limitation relates to the use of Spot data for the year 1990. The change detection method uses
the Normalized Difference Water Index, which requires a short-wave infrared band as an input.
While Landsat 4/5/7 and ASTER cover this spectrum, the HRV-2 instrument of early SPOT 1-3
satellites did not. Thus, it remains unclear, how the SPOT data had been processed.

Period 2007-2010: This period has been covered processing ALOS Palsar fine beam dual
polarization (FBD) L-band Synthetic Aperture Radar (SAR) data to detect land cover change
patterns (Mendez Zeballos and Seifert-Granzin 2013) applying methods developed by JAXA, the
Japan Aerospace Exploration Agency (Isoguchi 2012). The initial analysis (Mendez Zeballos and
Seifert-Granzin 2013) did not count with the Palsar scene S14E167 covering the northeastern part
of Santo. For the development of the deforestation assessment, the missing scene has been procured
and processed. The updated processing indicates a gross deforestation of 854.7 ha or 284.9 ha/year7
for Santo Island.

Although a very-high resolution coverage of Santo for 2011 (WordView-2) is available, the accuracy
of the SAR based change detection product can’t be assessed. Assessing the accuracy of change
patterns requires independent reference for the geometric and thematic accuracy of the product
describing the initial state (here land cover 2007) and the final state (Fichet et al. 2013). Visual
comparison between the SAR derived change patterns with the VHR data reveals that a substantial
part of the change has been detected in and around agricultural lands suggesting that the algorithm
accounts for seasonal changes in agricultural patterns. Avoiding such an overestimation would
require a consistent forest/non-forest cover representing the baseline for the initial state, which is so
far not available.

Period 2000-2007: To close the gap between the two periods, the 2000 — 2012 global
deforestation data set recently published by the University of Maryland (Hansen et al. 2013) in
cooperation with Google8 has been tested. For the period under consideration, a national forest
cover loss of 1,755ha is being reported. Extracting the loss pattern for Santo indicates a tree cover
loss of 82.6 ha for the same period. The global results are based on “tree cover” defined as all

7 This rate is still based on the number pixels. No filter to account for the MMU has been applied so far, to maintain consistency with
the geometric resolution of the products, which report on a pixel basis.
% The data is available at: http://earthenginepartners.appspot.com/science-2013-global-forest/download.html
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vegetation taller than 5 meters in height. The global product provides a year 2000 tree coverage in
percent as a baseline for calculating the change between 2000 and 2012. Then, the detected change
is being allocated to the years in-between the period using spectral metrics (ibid). An MMU is not
explicitly reported. All results are based on the geometric resolution of raw Landsat 7 data (28.5m).

Using a consistent tree cover loss coverage for a longer period providing even annual change
patterns can provide valuable insights in spatiotemporal LUC dynamics. Particularly, it would help
to assess the performance of certain deforestation drivers. However, the product makes it difficult to
anticipate a national forest definition9 to be applied consistently over multiple periods as requested
by the modalities for National Forest Monitoring Systems established by the Warsaw Framework
for REDD-plus'”

This review of the applied remote sensing data products reveals that it is currently not possible to base the
deforestation baseline on consistent time series of detected deforestation patterns. Additional processing is
required to consolidate the input data. Section 4 provides recommendations how to proceed.

Over the last four decades, the Government of Vanuatu conducted several national censuses on population
and housing (1967, 1979, 1989, 1999, 2009). Data of the last census aggregated at the province level has
been published (Vanuatu National Statistics Office 2009b; Vanuatu National Statistics Office 2009a). The
report provides data for the selected urban centers (Luganville, Port Vila) and provinces. Data for the Sanma
province can be used as a proxy for Santo Island, as the province includes only Santo, the smaller island Malo,
and a few very small islands. In case of demographics, the 2009 report provides data capturing the long-term
past and future dynamics of demographic growth. Apart, Vanuatu conducted a few agricultural censuses. The
last report dates from 2007 (Vanuatu National Statistics Office 2008) and refers to early agricultural census
activities conducted in 1991, 1992, and 1993. While the Agricultural census provides valuable insights
regarding the contribution of common livestock systems and agricultural practices to the livelihood of
houscholds it does not provide data to build time series reflecting the dynamics of changing land use.

To capture the influence of spatial proxies, such as settdlement patterns, road networks, distance to market
access, GIS data of the Vanuatu Resource Information System (VANRIS) has been processed (Bellamy 1993).
Biophysical parameters (slope, altitude) were derived from the TopoSAR Digital Surface Model (DSM)
procured by the Department of Agriculture.

The following section describes how the data has been used in the processing chain.

2 Projecting future deforestation using Dinamica EGO

The following processing chains build on the land-use and land-cover change simulation model developed by
B. S. Soares-Filho, Rodrigues, and Costa (2013). It has been implemented in version 2.4, the latest Dinamica
EGO release. All input and modeling files are stored in the folder c:\Dinamica_VAN. Using the same folder

structure is a precondition to run the models on other computers.

A national definition based on a percent-tree-cover threshold could be applied to derive a modified forest/non-forest cover for the
2000 baseline map. However, the amount of detected 2000-2012 tree cover loss can’t be modified by the user.

1 The Decision 11/CP.19, par. 3 (FCCC/CP/2013/10/Add.1) requests that data and information should be “transparent,
consistent over time, and suitable [for MRV]”.
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The model consists of a series of processing steps going from data preparation (calculating transition matrices,
calculating ranges to categorize continuous data), to the assessment of WoEs (calculate weights of evidence,
analyze map correlation), to the calibration of the simulation (set-up and run LUCC simulation model,
validate model, re-run simulation, project deforestation trajectories). Model adjustments are explained in each
processing step. While these steps could be integrated into one simulation model, it is recommended to keep
them apart to reduce processing time and allow for adjustments. The folder c:\Dinamica_ VAN\Models stores
all processing steps including sub-routines. Running the models requires a basic knowledge of Dinamica

EGO, which can be gained passing through the tutorial®.

All input data needs to be of the same size in terms of cell size, cell number, projection, and extent. It is
recommended to pre-process all the data in an external GIS, although Dinamica EGO provides some
advanced map algebra functions, too. ArcGIS allows configuring the geo-processing environment, such that
Arc Tool generates standardized outputs®.

The inconsistencies between the three deforestation products (cf. section 2.1, p. 9) require adjustments
leading to a de facto reduction of the reported deforestation rates. As the 1990-2000 change pattern does not
match the 2000 forest mask, the forest/non-forest (FNF) map 2000 had to be used as the common reference
to reconstruct the 1990 FNF cover by subtracting the 1990-2000 change from the 2000 forest map. Using
the FNF 2000 cover as reference excludes all change signals of the following periods (2000-2007, 2007-
2009), which appear outside the 2000 forest boundary. Consequently, the rates derived for the individual
periods (cf. Annex 1) appear lower than the reported results in section 2.1).

Figure 2: Model and results of the transition matrix for the period 1990-2010

Dinamica EGO provides a function (a so called “functor”) to calculate the transition matrix based on
standardized map inputs. Figure 2 shows the simple model (time steps = 20) and the resulting transition
matrix (cf. Equ.1, p.9). Due to the high uncertainties regarding the true level of the deforestation rate in each
period, we opted for calculating the transition matrix for one single period, which is 1990 - 2010. Annex 1
provides the transition matrices for all possible periods. The matrix indicated, that the rate for the transition

11

hetp://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=tutorial:start.
2 Set the processing extent and Snap raster source in Arc Map (Geoprocessing -> Environments -> Processing Extent) to the

baseline file, for example the forest/non-forest map of the initial time step.
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from class 1 (“forest”) to class 2 (“non-forest”), i.e. the gross deforestation rate reaches 1.32559 % reflecting a

change of 42,305 cells or 3,807hal3. The annual deforestation rate reached 0.0667 %.

The weights of evidence analysis of drivers requires an initial hypothesis which proxies deemed suitable to
represent certain spatial constellations of drivers and underlying causes which can’t be assessed, directly. Table
3 introduced the proxies and related assumptions regarding the link between proxy and driver/causes selected
for Santo Island. Driver proxy maps have been derived from the VANRIS database and the new TopoSAR
based topographic map.

All vector data has been converted to 30m Geotiffs, fit to one common processing domain, and exported to
the ERS file format. As distance to transport routes and settlements is being considered a potential driver
proxy, Euclidian distances to geographic features (coastline, roads, places, and capital) were calculated using
Dinamica EGO’s Calculate Distance to Feature Map functor. To limit the valid domain of the distance maps
to the land surface a land mask was applied in processing distance maps®. Figure 3 illustrates the procedure
for the distance-to-capital map.

Figure 3: Distance map processing applied to the provincial capital

13 All input data were resampled to 30m geometric resolution.

4" The Calculate Map functor applies a simple map algebra equation which multiplies the resulting distance map with the land mask

(raster value of land = 1, all other cells 0).

1990-2020 Deforestation rates for Santo Island / Vanuatuu 1 3



Table 1: Proxies and related drivers/causes

Proxy

Related drivers / causes

Assumptions

Coastline

Wood extraction

Logging
Fuel wood
Charcoal production

Pole wood production

Proximity criteria: the coastline
provides access to forests and
resources extraction.

Distance to Luganville

Wood extraction

Commercial logging
Fuel wood
Charcoal production

Pole wood production

Agricultural expansion

Economic: distance to
national markets

Permanent cultivation

Demographic

Proximity criteria: Distance to the
place with the highest population
density and regional market drives
demand for agricultural goods and

timber.

14
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Proxy

Related drivers / causes

Assumptions

Distance to villages

Wood extraction
e Timber
e Fuel wood

e Charcoal production

Agricultural expansion
e Livestock

e Slash and burn

e Crop production

e Demographic growth

Proximity criteria: Distance to the
villages drives slash and burn
practices, and demand for
agricultural goods, fuel wood,
charcoal, and pole wood

Distance to roads

Infrastructure extension
e Transport

e settlements

Proximity criteria: Roads facilitate
access to forests, forest conversion,
and the development of new
settlements.
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Proxy

Related drivers / causes

Assumptions

Slope

Wood extraction

e Commercial logging

Agricultural expansion
e Slash and burn

e Permanent cultivation

Topographic criteria: Slope might
impede access to timber resources
and subsequent conversion of
logged forest to agriculture. Flat
areas are more suitable for
agriculture.

Distance to non-forest edge

Agricultural expansion
e Slash and burn

e Permanent cultivation

Proximity criteria: the selection of
sites to be deforested follows to a
certain extend past deforestation
practices.

16
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Proxy Related drivers / causes Assumptions

Vegetation cover

Agricultural expansion Vegetation can be used as a proxy
for favorable climate conditions for
e Permanent cultivation agriculture.

All proxy maps were stacked into one ERS-file using the Create Cube functor. The corresponding model
Cube.cgoml is available in the folder c:\Dinamica_ VAN\Models\2_categorize_data.

Apart from the static driver maps listed in Table 3, the annually changing distance to forest edge has been
included as a dynamic layer to be updated during every time step (cf. Figure 4). The dynamic layer anticipates
the observations that deforestation activities follow past deforestation events to a certain extent creating so
called fishbone patterns. Consequently, the forest edge of the former period could be considered a driver for
subsequent deforestation activities, which is being captured iteratively by updating the distance-to-nonforest
map. Thus, Calculate Distance Map has to be configured setting the category to which distance is being
updated to 1 (= forest).

To assess the explanatory power of proxies for selected drivers and underlying causes, spatial input data has to
be transformed into categorical data. All proxies expressed as continuous values have to be transformed into
categorical maps using the Determine the Weights of Evidence Ranges Functor. Here, all distance maps have
been transformed using a standard increment of 30 (besides the slope’s increment to be set to 10 due to its
limited parameter range), a minimum delta of 60, a maximum delta of 500,000 and a tolerance angle of 5.0
in configuring the categorical transformer within the function determining the weights of evidence ranges

(figure 4).

The output of this step is the skeleton file providing the transformed potential categorical proxy ranges. At
this stage, the ranges have been derived from the statistical properties of proxy maps themselves and do not
show any explanatory power.
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Figure 4: Configuration of the Determine the Weights of Evidence Ranges Functor

Within the next step, theses ranges are linked to the observed patters to derive coefficients, which qualify the
range intervals in terms of their explanatory power regarding the forest cover change pattern.

Once the ranges of the categorical proxies have been determined, the model of step 2 has to be re-run using
the weights skeleton as an input. The model determines a functional relationship between a parameter
representing a certain proxy range and its explanatory power regarding the observed pattern. Dinamica EGO
provides a viewer (cf. Figure 5) visualizing the functional relation between the range of the variable and its
explanatory power. A positive coefficient value indicates that the proxy actually “drives” the observed change
within this range, values closed to 0 flag that there’s no relationship between the proxy and the change in the
given range. Negative values indicate, that the relationship is averse for a given range, in the sense that the
proxy contributes to avoiding land-use change. The numerical results are stored WoE coefficient file. The
Excel-file stored in the corresponding results folder provides its content in a more readable format. The
example in figure 5 indicates, that distance to road is only significant in explaining observed deforestation
patterns up to a distance of 210 meters from the center point of the settlement. Evidently, the significance of
the proxy range depends on the quantity of deforestation, the thematic accuracy of the FNF maps, and the
positional accuracy of the proxy.
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Figure 5: Visual interpretation of the significance of WoE coefficients

Results indicate that altitude has a limited explanatory power. Distance to the coastline is significant for
deforestation up to a distance of 210m, while distance to Luganville could explain deforestation patterns up
to a distance of 12 km. In case of roads, the critical threshold is 90m due to the denser road network around
Luganville. Beyond 40 degrees, slope becomes a significant proxy as only a limited amount of deforestation
doesn’t occur on steeper slopes. The vegetation map provides a self-fulfilling prophecy, as the most significant
classes appear to be Grasslands (classes 10 and 11).

The eventual correlation between proxies has to be assessed pairwise to verify the requirement that the spatial
variables have to be independent. Dinamica EGO provides a function (“Determine Weights of Evidence
Correlations”) calculating different correlation measures for all possible proxy pairs. Annex 2 provides the
results of the assessment, as included in the file proxy_correlation.csv.

Although there is no agreed procedure how to compare the correlations measured by different statistical
concepts, the pairs with the highest correlation in each indicator are candidates to be ruled out. Here, the
pairs “altitude” / “vegetation” and “Distance_to_provincial_capital” / “Distance_to_roads” reach the highest
correlation in both indicator groups, while other pairs don’t appear to be correlated (Annex 2). Consequently,
one of the two proxies within each pair has to be ruled out. As altitude shows little explanatory power it is a
good candidate. Distance to roads is excluded as well, as the density of the road network limits the predictive
power due its limited distance ranges. To anticipate theses modification the WoE_coefficients.dcf file has to
be edited within the model and stored under a new name (WoE_coeffcients_wo_correlations.dcf).
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Figure 6: Configuration of the correlation assessment model

The configuration of the simulation model requires several new functors and, of course, the calibration files
(WoE coefficients, multiple strep transition matrix). The tutorial (B. S. Soares-Filho, Rodrigues, and Costa
2013) and the internal Help function explain the different functors in detail. The model runs 20 time steps
generating annual FNF maps (landscape##.ers with ## = time step) and probability maps. In its current
configuration, it doesn’t allow for the formation of random forest patches through a seeding mechanism (all
Patcher parameter set to 1.0). This restriction can be relaxed in complementary runs depending on the type of
observed deforestation pattern. The complementary functor Expander expands existing deforestation patches
leading to fishbone patterns. Considering Santo’s past deforestation patterns, the Patcher configuration deems
more appropriate.

Figure 7. LULCC simulation model for the period 1990 - 2000

The resulting probability maps reveal that the distance to the provincial capital shows an overarching impact
on the deforestation probability (figure 8).
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Figure 8: Deforestation probability map for year 2010

The resulting FNF map for time step 20 (landscape20.ers) can be compared with the detected FNF cover for
year 2010.

Dinamica EGO provides sophisticated functions to assess the similarity between observed and simulated
spatial patterns. Considering the heterogeneity and deficiencies of the input data, we chose the default
configuration (figure 9).

Figure 9: Similarity assessment for period 1990 - 2000
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Not so surprisingly, the resulting similarity map reflects the scattered patchy deforestation pattern of the
reference period. As figure 10 shows, similarity is pretty low. Good matches between observed and simulated
patterns occur only close to settlements and the provincial capital. This relates to the generally low
deforestation rate, compared to the overall forest cover. Furthermore, uncertainties regarding the true
quantity, thematic and positional accuracy of land use change lead to noise, which reduces the explanatory
power of the WoE coefficients and the predictive power of the model.

Complementary to step 6, Dinamica EGO provides the option to conduct the similarity assessment at
different resolutions under the assumption that part of the data inherent noise might be damped at coarser
resolutions. The assessment reveals that no significant improvements can be achieved by shifting to lower
spatial resolutions.

Figure 10: Similarity between simulated and observed deforestation for the period 1990 - 2000

(similarity. tif)

1.00

0.00
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Step 8: Simulating LULC change for 2010 - 2020

The weak similarity raises doubts whether sound correlations between socio-economic parameters and
deforestation rates can be derived. Comparing deforestation rates against reported demographic growth
indicates that the deforestation rate exceeded population growth during the last decade (cf. Table 2). As the
deforestation rates themselves remain uncertain, robust correlations can’t be achieve at this stage.

Table 2: Deforestation rates and demographic growth 1990 - 2010

Population increment Deforestation increment

# inhabitants # ha
1989-1999 10,542 970
1999-2009 9,771 2,838

Source: (Vanuatu National Statistics Office 2009a); own calculations

Thus, the simulation model developed in step 5 will be used in a conservative mode projecting deforestation
patterns for 2010 to 2020 based on the detected rates for 1990 — 2000, setting the number of iterations to 30
(functor Repeat).

Figure 11: Deforestation projection model 1990 - 2020

To reduce storage, this model generates a probability map for the whole period (1990-2020) and the
projected FNF map for the year 2020.

3 Discussion of results

Based on the WoE configuration for the period 1990-2010 and the corresponding average deforestation rate,
the model projects a deforestation rate of or 0.67% for the period 2011-2020. With 0.07%, the average
annual deforestation rate remains low. Figure 12 indicates, that most of the deforestation will occur in the
surroundings of the provincial capital and, to a lesser extent, along Santo’s west coast.
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Figure 12: Projected 2020 forest cover and 2011 - 2020 deforestation

Deforestation: 1,889.8 ha
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Figure 13: Historic and projected forest cover change on Espiritu Santo Island, 1990 - 2020
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The graph in figure 13 shows the total forest cover on Espiritu Santo for each year between 1990 and 2020,
divided into measured historic and projected forest coverage. With a projected annual 0.07 % deforestation
rate, the predicted forest cover loss is twice as fast as in the 20 years before, even though it slows down
significantly compared to the years 2007 — 2010. Table 3 below shows the measured and predicted
deforestation in Santo in a comparison of area and rate for the observed time periods and on annual basis.

Table 3: Comparison of total and annual area; total and annual rate of deforestation in Santo Island for the
observed and projected periods

Period Total deforestation [ha] Total derfaotreestatlon Annual d[(;f:]restatlon Annual dreaf&restatlon

1990-2000 969.8 0.34 % 97 0.034%

2000-2007 82.6 0.03 % 11.8 0.004%

2007-2010 854.7 03 % 284.9 0.1%
Total

1990 - 2010 1907.1 033 % 95.4 0.033%

It is not fully clear why the deforestation between 2000 and 2007 dropped significantly in comparison to the
carlier decade and especially to the following three years. While the data availability might be one reason, the
trend is still obvious. An attempt to explain the difference is that the highest impact on the forests in Vanuatu
is forest degradation. Highly degraded forest area will be quickly converted to non-forest land when a new
economic opportunity turns up. In order to consolidate this analysis, economic production data for 2000 —
2010 should be analyzed to investigate a possible influence on the deforestation pattern.
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Due to the explained limitations, the explanatory power of the WoE coefficients and the projective power of
the LULCC model remains rather weak. Improving the quality of the inputs, particularly their thematic /
geometric, and their positional accuracy, will not only improve the temporal consistency of the analysis, but
provide more accurate results and improvements in model calibration.

4 Recommendations

The results of a simulation model can only be as reliable as its input data. High uncertainties regarding the
historic deforestation rate and patterns limit the precision of the probabilistic weights-of-evidence assessment
to quantify the impact of proxy drivers. This limitation affects the validity of the simulated future
deforestation rate and pattern. While it is possible to develop the model further, for example by implementing
sub-regions with specific transition rates and weight-of-evidence configurations, the first priority should be
improving the consistency of the input data. To achieve this goal, the following steps, working backwards in
time to achieve temporal consistency, are recommendable:

1. Instead of using the 2000 forest/non-forest map as a baseline for classifying past and future change
patterns as deforestation, the processing shall be based on a validated forest / non-forest map with
known accuracy. This requirement points to year 2010, for which VHR data is available to serve as an
independent higher-resolution verification source. As optical data for this year is scarce, it is
recommended to develop a SAR-based 2010 FNF cover applying JAXA’s default methodologies15 to
available ALOS PALSAR data. Although the accuracy of the product might be slightly lower than the
one based on multispectral optical data, it will be almost cloud-free and consistent with the SAR-based
change detection for the period 2007-2010.

2. The accuracy of the SAR-based 2007-2010 has to be assessed. Its verification requires at least one VHR
coverage for the area around Luganville, showing the highest dynamics in LULC change. If a validated
and verified 2010 FNF map is available it can be included in a modified processing chain as proposed

by JAXA (JAXA 2012) to improve its thematic accuracy.

3. Covering the period 2000 — 2007 is the most challenging task. As there is very little suitable
multispectral optical data available, options are limited. Vanuatu’s default method for LULCC
detection based on optical data can be used, but certain data gaps will remain due to cloud cover and
the scan line correction error of Landsat 7. The reference image for verifying the SAR-derived 2007
FNF cover can be used as reference for the 2000 — 2007 change detection. Remaining gaps shall be
mapped and could eventually be filled either by the 2007 FNF map or the 2000 FNF map (see next

step).

4. The 1990-2000 deforestation assessment is key for capturing the long-term trend of certain
deforestation drivers and for justifying that Vanuatu’s deforestation baseline needs to be adjusted
upwards. It is the opinion of the authors, that the 1990-2000 change detection has to be modified and
reprocessed based on a forest definition to be consistently applied across all the processing periods. If
the default method (Herold et al. 2007) is to be used, SPOT data must not be included as it doesn’t
provide the necessary short-wave infra-red band. This condition will limit the options to cover 1990
even more. The availability of almost cloud free Landsat TM4 data has to be assessed. If there is no
alternative to SPOT, the change detection method has to be adjusted to the band characteristics.

15 As of now, JAXA considers two types methods: (JAXA 2012) provides shell scripts for image segmentation and classification. The
classification scripts encompass various classifiers. Recently, JAXA is considering using the Remote Sensing and GIS Software

Library (RSGISLib).
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Our final recommendation relates to the current availability of Landsat 8 data covering Vanuatu’s territory.
As of now, Vanuatu’s Landsat 8 coverage stays behind the acquisition frequency over continental areas. While
continental areas were covered at around two scenes per month during the last 11 months, Vanuatu has been
covered by 7 scenes only. It is of utmost importance for the sustainability of the National Forest Monitoring
system, that the Government of Vanuatu requests USGS to cover the small island states in the same way as
the continental areas.

Dinamica EGO offers several capabilities to be anticipated in a modeling approach building on consolidated
data. Eventually, Santo can be divided into two sub-regions to be calibrated independendy. While the
deforestation pattern of Santo’s west coast is framed by small scale agriculture and small-scale agricultural
trade relying on shipping, land-use change in Santo’s eastern part is driven by cattle ranching, medium scale
agriculture, urbanization, and tourism development. Both differing dynamics can be accommodated in a
regionalized model if suitable calibration data is available. However, model calibration can only start once the
deforestation analysis has been consolidated.

The deforestation baseline for Sanma province does not yet state the amount of carbon emitted from this
activity. A forest carbon inventory will be implemented in the province in the third quarter of 2014, after
which the carbon value will be added to the deforestation baseline to calculate a deforestation-related
reference emission level.

Despite the difficulties in data accuracy, this study makes it clear that deforestation rates for Santo have been
very low in the past and are expected to remain so in the near future. The Sanma province shares with the
majority of Pacific Islands the fact that forest degradation is a much larger problem for sustainable resource
management and greenhouse gas emissions. The potential for measures that sequester carbon is high. In the
Pacific, countries should therefore focus on improving data and analysis on the impact of forest degradation
on biomass and carbon contents in the region’s forests. A baseline on historic and projected forest degradation
must be the priority.
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Annex 1: Transition matrices for different deforestation periods

1990 - 2000

2000-2007

2007-2010

1990-2010

2000-2010

Cells per
category
(initial
landscape):

0

1,185,512

1,196,288

1191099

1179407

1190182

1

3,193,750

3,182,974

3179725

3191417

3180642

Cells per
transition

0

0

0

0

0

0

1

10776

918

30613

42305

31530

Single Step
Transition
Matrix:

0

1

0.0033741

0.0002884

0.0096276

0.0132559

0.0099131

Multi Step
Transition
Matrix

0

0

0

0

0

0

1

0.0003379

0.0000412

0.0032195

0.000667

0.0009958

Deforestation
during
transition
[ha]

970

83

2,755

3,807

2,838

Annual rate
[ha/yr]

97

276

381

284
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